IBM: Breakthrough heralds supercomputer on chip

(Agencies)
Updated: 2007-12-07 10:03

FRANKFURT -- IBM says it has made a breakthrough in converting electrical signals into light pulses that brings closer the day when supercomputing, which now requires huge machines, will be done on a single chip.


A view of an IBM facility outside Boulder, Colorado October 18, 2006. IBM says it has made a breakthrough in converting electrical signals into light pulses that brings closer the day when supercomputing, which now requires huge machines, will be done on a single chip. [Agencies]

In research published on Thursday in the journal Optics Express, IBM said it had produced electro-optic modulators 100 to 1,000 times smaller than comparable silicon photonics modulators and small enough to fit on a processor chip.

By connecting processing cores on a chip by light instead of with wires, the problems of high energy consumption and heat generated by multi-core chips could be bypassed, enabling leaps in computing power.

IBM said it had reached a "milestone" in the quest to connect hundreds or thousands of processing cores on a tiny chip. By comparison there are nine cores on the sophisticated chips that power the Sony PlayStation 3 games console.

"Just like fiber optic networks have enabled the rapid expansion of the Internet by enabling users to exchange huge amounts of data from anywhere in the world, IBM's technology is bringing similar capabilities to the computer chip," said Will Green, IBM's lead scientist on the project.

He said using light instead of wires to send information between the cores could be as much as 100 times faster and use 10 times less power than wires.

Green told Reuters IBM had used standard industry processes and tools to make the tiny silicon Mach-Zehnder electro-optic modulators.

CHALLENGES AHEAD

That gave the research team confidence the process could be replicated commercially, although it would likely take at least a decade for that stage to be reached.

"We're looking at much more real-world applications in the timeframe of 10 to 15 years or something like that. There's a lot of pieces to come together. There are many challenges ahead," Green said in an interview.

He said in future tiny supercomputers on a chip could expend as little energy as a lightbulb, paving the way for enormous reductions in cost, energy, heat and space required while increasing communications bandwidth.

Technology services company IBM is also the world leader in supercomputers, which are used for problems requiring intensive calculations, for example in quantum physics, weather forecasting and molecular modeling.

Drastically shrinking the size and energy requirements of supercomputing could open up possibilities of powerful data analysis in remote locations or high-resolution three-dimensional image rendering in real time, Green said.

"You immediately can envision the mobile applications that that would allow you to do," he said. "Remote laboratory instruments for medical applications, screening for diseases or even complicated DNA analysis."

IBM's research team has been working on the project, partly funded by a US government defense research agency, for about five years. Green declined to comment on the project's budget.

He also said it was impossible to predict what a supercomputer on a chip might eventually cost. "We're really at the beginning of the process," he said.



Top World News  
Today's Top News  
Most Commented/Read Stories in 48 Hours