Prosecutors strive to recover workers’ wages

BY YANG ZEKUN
zhongxin@chinadaily.com.cn

Prosecutorial departments across the country approved the arrest of 1,599 people for refusing to pay wages in 2019, the Supreme People’s Procuratorate said Thursday.

They approved the arrest of 1,035 persons in 2,136 cases and supervised the arrest of another 459 people in 478 cases, helping workers recover a total of 217.79 million yuan ($31.5 million) in wages.

The SPP in November issued a letter asking procuratorial departments at all levels of handling cases in which employees had been exploited to improve the quality and efficiency of handling such cases.

The procuratorial organs have been making good use of the sharing platforms of the administrator, law enforcement and criminal police organs to promptly provide procuratorial organs, public security organs, human resources and social security organs with the information sharing system, said Zhao Zhongxiang, chief procurator of the first procuratorial office of the SPP.

Procuratorial organs are urged to strictly grasp the policy of improving the quality and efficiency of handling such cases, maliciously refuse to pay wages and shirk their responsibilities, and to promote the interests of the enterprises while handling such cases.

In 2019, procuratorial organs at all levels approved the arrest of 205 workers for refusing to pay wages in 348 cases and filed 235 complaints in 251 cases.

This marks the 16th year in a row in which procuratorial organs approved the arrest of more than 200 workers over 4.4 million yuan in cases involving payment of wages, and the number of such complaints has decreased year on year and dropped by 25.5 percent year on year.

The report said that some cases should be handled fairly and properly based on laws and rules by law enforcement and procuratorial organs.

Meanwhile, courts were also urged to maintain justice for enterprise employees and urge enterprises to fulfill their legal obligations promptly.

Zhao Zhongxiang, one of the 31 representatives of China in more than 40 countries, is a long-time veteran of China Central Television (CCTV) and the first male TV anchor in the country and second Chinese TV anchor after Shen Li.

Born on Jan 16, 1926 in Shaanxi’s Ningshi county, Zhao Zhongxiang joined Beijing TV in the 1950s. In 1958, he joined China Central Television as an anchor.

In 1983, Zhao Zhongxiang was appointed to give the day’s news on CCTV for the first time.

Since 1984, he had hosted the Spring Festival Gala — one of the most-watched TV shows in China showing last year’s Lunar New Year — for 15 times, which made him the longest-serving host on CCTV’s New Year’s Eve show.

On Dec 31 that year, CCTV announced Wang Yisa, the news anchor of CCTV’s show about wild animals, which Zhao hosted in 1983, he hosted the TV show Xuanxian and Nature, which was about the awareness about animal and environmental protection and those have been enjoyed by Chinese audiences for many years.

“My father was passionate about his job and was loved by millions of viewers of his popular TV shows...He respected his peers and was always on calligraphy, painting and cooking. He was also dedicated to training young talent,” said Zhao’s daughter, ZHao Weihua, who worked closely with her great father before she passed away in 2019.

“Such an unexpected and tragic event has left a gap in my heart and the hearts of many of our friends,” she wrote in a post on Sina Weibo.

On Jan 27, 2020, the Chinese Academy of Sciences released results of a study that the new coronavirus and SARS-CoV-2, which caused the 2003 SARS outbreak, were very closely related. The study was the first comprehensive detection and comparison of the genetic sequences of these two viruses, which have been a major concern to scientists around the world.

The study showed that the two viruses share 96 percent of their genetic sequences, with 99 percent identity in the viral genes coding for the spike protein. The study also showed that the new coronavirus and SARS-CoV-2 share 91 percent of their genetic sequences in the viral genes coding for the nucleocapsid protein, which is involved in viral genome replication and packaging.

In addition, the two viruses share 93 percent of their genetic sequences in the viral genes coding for the envelope protein, which is involved in viral entry into cells.

The study also showed that the two viruses share 95 percent of their genetic sequences in the viral genes coding for the RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 96 percent of their genetic sequences in the viral genes coding for the viral polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 95 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 96 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 95 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 96 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 95 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 96 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 95 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 96 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 95 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 96 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 95 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 96 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 95 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 96 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 95 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 96 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 95 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 96 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 95 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.

The study also showed that the two viruses share 96 percent of their genetic sequences in the viral genes coding for the viral RNA-dependent RNA polymerase, which is involved in viral genome replication.